Chapter 10 Sequence Modeling: Recurrent and Recursive Nets
最近比较浮躁,书读不进去,总结也写不下去。虽然感觉有很多事情要做,却有种分不清主次的感觉。啊啊啊啊啊啊啊啊,什么时候才是个头啊!!!!!!
这一 Chapter 的很多内容都没有仔细的去看,所以这个总结里的内容也很少,会在后面慢慢的补充上来 -_-
首先,介绍了RNN
的定义:
Recurrent neural networks or RNNs (Rumelhart et al., 1986a) are a family of neural networks for processing sequential data. specialized for processing a sequence of values x(1), . . . , x(τ).
也就是在每一步都有新的输入,所以从某种角度它也算是一种Feedforward Networks
。
另外,这里介绍了RNN
的parameter sharing
机制:Each member of the output is produced using the same update rule applied to the previous outputs. This recurrent formulation results in the sharing of parameters through a very deep computational graph.
Sharing Parameters is key to RNNs。书中举得 “I went to Nepal in 1999 ” and “In 1999, I went to Nepal ”的例子就是为了说明这个重要性。